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1. Summary 
We implemented a hydraulic erosion model for procedural terrain generation to produce more natural              
looking landscapes in real time. 

● Computed a 1024x1024 heightmap in no more than 2ms per cycle. 
● We implemented 3 key parallel approaches and have presented their results. 
● Capable of operating on continuously scrolling terrain instead of a fixed heightmap on NVIDIA              

GTX 1050. 
 

2. Background 
Procedurally generated heightmaps have been used to quickly create large height maps for video game               
terrain for decades. However, purely procedural techniques ultimately lack the natural qualities present in              
real landscapes. A common method for increasing the realism of terrain is to model hydraulic erosion; the                 
simulation of the flow of water removing and transporting surface material. However, modelling erosion              
accurately requires performing calculations on every cell of the heightmap being eroded for many iterations.               
This presents a significant bottleneck for CPU programs and a significant opportunity for parallelization with               
GPU’s. 
 

3. Approach 
The key insight into our approach is that given enough information at the start of an iteration, instead of                   
calculating the impact each cell has on its neighbors and distributing the results (mimicking what happens in                 
real life),  each cell can simply calculate the impact its neighbors would have on it, and adjust accordingly.  
This has several benefits for parallelization which be discussed after the description of the erosion               
mathematics. 

3.1. Erosion Algorithm Description 
The final algorithm implemented is an abstraction away from true hydraulic erosion, in particular, there is no                 
concept of persistent velocity between iterations, all water movement is based on the terrain and water                
distribution at the time of calculation. This allows a simplified calculation of erosion, where all of the water                  
volume on a cell that can move at each timestep does so if it can. 
 
At every time step, each cell performs the following calculations:  
 

1. Get the difference in water height to each neighbor.  
2. Calculate Outflow: 

a. Sum the difference in height between self and each neighbor of lower height, store as               
outflow.  

b. Subtract outflow from current water volume. 
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c. Subtract an equivalent fraction of sediment from the sediment total. 
3. Calculate Inflow: 

a. For each neighbor of greater height, use the stored outflow to calculate how much water               
flows into cell, store as inflow. 

b. Add inflows to current water volume. 
c. Add equivalent portion of neighbor sediments to the current cell sediment total. 

4. Calculate new erosion and deposition: 
a. Define process constants ABRASION, SOLUBILITY, and DEEP_WATER_CUTOFF,       

which respectively determine how much material is removed by flowing water, how much             
material can be held in water, and the depth of water at which point adding water no longer                  
erodes the terrain beneath it. 

b. Define sediment capacity as SOLUBILITY*(water volume) 
c. Define cell erosion as ABRASION*(inflow+outflow), moderated by       

DEEP_WATER_CUTOFF.  
d. Remove all cell erosion from the terrain height, adding to sediment total.  
e. Add all sediment over the sediment capacity to the cell as terrain, removing it from the                

sediment total.  
5. Estimate new outflows using new height values.  
6. Add water volume to the heightmap, using a separate kernel and the rain map. This kernel is                 

extremely simple (a single addition operation) and will not be discussed further.  
 
These steps are repeated every iteration. In practice, because the process is heavily discretized and there is                 
an assumption that ​all water moves every iteration, the inflow and outflow values are damped to prevent                 
undesired oscillation in large bodies of still water (this effectively adds a very simple sense of velocity to the                   
calculation). A value of b=.25 gave good results. 

3.2. Mapping to the GPU 

3.2.1. GPU processing layout and global memory allocation 

The current version of the algorithm takes in a heightmap, a profile for applying water to the heightmap, and                   
several parameters that change how the erosion process behaves. It assumes a square heightmap of an                
integral number of block widths, so it can create a number of 2D blocks such that each cell is given its own                      
thread. In practice, we hardcode blocks of width and height 16. 
 
The heightmap and rain profile are copied to the GPU as single dimensional vectors. In addition to the                  
height, we also store the volume of water, amount of sediment, and expected outflow (more on this later)                  
from each cell, each in their own 1D vector.  
 
We maintain separate input and output buffers for each iteration, so in practice we store two copies of each                   
of the above arrays on the GPU.  
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3.2.2. Shared Memory 

Each CUDA block is mapped to a contiguous square portion of the input heightmap. Because the algorithm                 
relies on each cell accessing lots of information about its neighbor (each value is accessed approximately                
five times), significant gains can be made by loading those frequently shared data into shared memory.  
This is very easy to do for all of the actual data in a block, but the edges of a block require information from                        
other blocks. For the sake of simplicity in writing other portions of the code, for each simulation parameter,                  
we define an array in shared memory that is BLOCKDIM+2 wide and tall, allowing us to store those edge                   
values in shared memory as well, despite the fact that each is only used by one cell. The “corner” values of                     
this larger array are never accessed or populated. A depiction of this array is shown below.  
 
 

 
Figure 3.2.1  

 
Cell height, water volume, sediment volume, and expected outflow are all loaded in this fashion.  

3.2.3. Synchronization 

Significant care was taken to reduce the need for synchronization. Currently, the only synchronization events               
occur after a kernel finishes executing, and after the shared memory load inside each block.  
 
This is possible for two reasons: first, we maintain separate input and output buffers. This allows us to                  
guarantee that the input buffer is read only, meaning we do not need synchronization to read from it.  
 
The second reason is the aforementioned assumption that each cell can calculate the inflow from its                
neighbors. Under a normal mental model of erosion, outflows and inflows from each cell are values                
calculated during each update step, and discarded in between iterations. Calculating erosion this way requires               
each cell to synchronize updates to all of its neighbors, creating a significant quantity of either extra memory                  
operations and/or synchronization traffic. However, in the mathematical model described above, the only             
information a cell needs to calculate how much water is flowing ​into it that it does not already have is how                     
much water is flowing out of its neighbor in total. Storing this value allows each cell to fully determine its                    
own state for the next iteration, with the exception of outflow. To save the computational effort of running an                   
extra kernel to perfectly determine outflow, we simply estimate it using current values of outflow and inflow,                 
which gives reasonably accurate erosion results.  
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3.3. Previous Attempts 
 
Our initial implementation used a structure that contained all the information relevant to a single cell, and the                  
created an array of that structure. Profiling revealed significant latency issues due to uncoalesced data               
accesses, so we switched from an array-of-structs paradigm to a struct-of-arrays paradigm, which resulted in               
a 5x-10x speedup, depending on the kernel.  
 
Understanding the bottleneck of our previous approach we attempted to use shared memory in collaboration               
with some atomic instructions but faced problems near the boundaries. The improper shifting of sediments to                
the neighbouring cells used to cause a pattern in which the terrain on the boundaries of the blocks would                   
show some protrusion. So realising all the problems and bottlenecks we resorted to the solution mentioned                
above. 
 
Also, we used two buffers for each data element, operating on one and updating the other. The OpenGL                  
pointer to the vertex_buffer was switched at each display call to render seamlessly. 
 
We started with implementing a simple approach were the water levels of the neighboring cells were                
compared and the movement of water and the sediments to the neighboring cells was calculated. However,                
this approach involved too much talk-over with the surrounding cells and caused a lot of atomicity issues.                 
Initially, we used a global memory and the cell values would be written to the global memory using atomic                   
operations. However, this strategy was very slow as each cell would read and written to by 4 of its                   
neighbours for 3 data elements -  height, water and erosion.  
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4. Graphics 
We used OpenGL to render the graphics for the displaying the generated terrain.[2] We have added a mouse                  
and keyboard inputs along with a timer callbacks, which allow controlling the camera position. Also using                
the keyboard displaying water or terrain color based on height can also be controlled. For rendering, we used                  
tesselation using triangle_Strip for terrain and points for displaying rainwater with normal ambient lighting              
along with a point light source.[3] We did not implement texture and other components of the Graphic                 
Pipeline as our prime focus was to optimise terrain generation rather than terrain rendering. This was mainly                 
because none of us had prior experience with OpenGL and getting the tools to work right proved                 
challenging. 
 
We experimented with basic 3 terrains: 

1. Mountain height map 
2. Conical height map 
3. Random height map (Simplex fractal) 

 
And 3 rain models: 

1. Complete grid-wide rain 
2. Circular centre rain 
3. Rain strip 

 
Figures 4.1 - 4.4 are taken with the following erosion constants:  

● EVAPORATION: 0.5f 
● SOLUBILITY: 1.0f 
● ABRASION: 0.1f 

 

 
Fig 4.1. Mountain height map after circular centre rain (2000 iterations). 
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Figure 4.2 shows the conical height map with the strip rain pattern at the top edge of the surface. After 1000                     
iterations the image on the right displays the erosion of the soil caused by the flowing rainwater.  
 

 
Fig 4.2. Conical height map during and after rain (1000 Iterations) 

 

 
Fig 4.3.Initial random height map with and without rainwater 

 

 
Fig 4.4. Height map after 1000 iterations (left) and 2000 iterations (right) 
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Fig 4.5 Random height map before (above) and after (below) 100 iterations of map-wide rainfall. 

 
As can be seen in figure 4.5, if the constants EVAPORATION and ABRASION are increased by a factor of                   
10, a realistic train can be generated with just 100 iterations. 
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5. Results 
5.1. Computation Time 
We ran the algorithm at a number of grid sizes and timed how long it took to perform 10 iterations of the                      
algorithm. The charts below presents the time in milliseconds it took to run a single erosion step at various                   
sizes. In general, time to compute increased linearly with the number of cells being evaluated. 
The machine used to test the algorithm was a Geforce GTX 1050, which has only 2GB of RAM. Attempts to                    
run on grid sizes larger than 4096 ran into memory allocation errors. 
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5.2. Profiling Results 
Heavy use of the Nvidia Visual Profiler was made during the development of this algorithm. It has                 
consistently indicated throughout development that the largest bottleneck to improved performance is            
instruction latency. 

 
The “other” category in a compute capability 6.X device indicates that the algorithm spends most of its time                  
waiting on branch divergence or register overflows. Branch divergence is significantly more likely. 
The mathematical portion of the algorithm encounters several areas where division by zero occurs when               
there is no water in a cell. Checking for that creates high rates of divergence when a block contains a                    
boundary between a watery area and a dry area. In addition, the algorithm relies heavily on min and max                   
functions to keep certain values (mostly water volume) at or above zero. This presumably creates a large                 
number of conditionals that will evaluate differently for different threads.  
In addition, the grids loaded in shared memory are larger than a block, so numerous conditionals are used to                   
fill in the additional areas and these are possibly not well warp-aligned.  
 

6. References 
1. Xing Mei, Philippe Decaudin, Bao-Gang Hu. ​Fast Hydraulic Erosion Simulation and Visualization            

on GPU. 
2. CUDA Programming Guide 
3. Youtube channel - OpenGL, ​TheChernoProject 
4. Woo, Neider et Al.,​ Chapter 4 Lights and Materials. 
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7. Division of Work 
Matthew Swenson (50%) - Handled the parallel implementation of the algorithm on the CUDA kernel.  
Tanmay Patil (50%) - Handled the OpenGL and graphics part of the applications. Ported the parallel Cuda 
program to OpenGL CUDA interoperability. Provided inputs for parallelism strategies and debugging. 
 

8. Appendix 
The values for the graphs discussed in the results section are provided in the table below.  
 

Size Time per iteration(ms) First initialization time Area of map 

32 0.018 17.803 1024 

64 0.019 18.945 4096 

128 0.037 21.896 16384 

256 0.111 19.881 65536 

512 0.378 23.639 262144 

1024 1.248 31.73 1048576 

2048 3.891 57.812 4194304 

2400 6.729 60.116 5760000 

2800 7.219 73.52 7840000 

3200 10.61 115.143 10240000 

3600 12.288 114.073  

4096 15.436 139.734 16777216 
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